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N.S. Mankoč Bořstnik, Faculty of Mathematics and
Physics, University of Ljubljana

H.B. Nielsen, Niels Bohr Institute, University of
Copenhagen

3th International Forum on Physics and Astronomy, 11-13
December, 2023

December 12, 2023



** Some publications:

▶ Phys. Lett. B 292, 25-29 (1992), J. Math. Phys. 34,
3731-3745 (1993), Mod. Phys. Lett. A 10, 587-595 (1995),

▶ Phys. Rev. D 62 (04010-14) (2000), Phys. Lett. B 633
(2006) 771-775, B 644 (2007) 198-202, B (2008)
110.1016, JHEP 04 (2014) 165, Fortschritte Der
Physik-Progress in Physics, (2017)1700046,
J. of Math. Phys. 43 (2002), (5782-5803), hep-th/0111257,
J. of Math. Phys. 44 (2003) 4817-4827, hep-th/0303224,
Jour. of High Energy Phys. 04 (2014)165,doi:10.1007, [
http://arxiv.org/abs/1212.2362v3].

▶ Rev. Artile in Progress in Particle and Nuclear Physics,
vol.121(2021)103890,
http://doi.org/10.1016.j.ppnp.2021.103890

▶ Nucl. Phys. B, j.nuclphysb.2023.116326,
Symmetry 2023,15,818-12-V2 94818,
https:doi.org/10.3390/sym15040818



o To represent (explain) the internal spaces of fermions and
bosons usually the groups are used.
o The internal space of fermions is in this case described by
the fundamental representations of the groups,
o the internal space of bosons is correspondingly described
by the adjoint representations of the groups.

In theories assuming more than the observed d = (3 + 1),
that is d > (3 + 1),
with one time and d − 1 space dimensions, (and the Lorentz
symmetry in all dimensions),
fermions carry two kinds of half integer spins in d = (3 + 1),
(± i

2 ,±
1
2), and also half integer spins, ±1

2 , in all other
dimensions,
bosons carry two kinds of integer spins in d = (3 + 1),
(±i , 0), (±1, 0) and also integer spins, (±1, 0) also in all other
dimensions.



o Can the internal spaces of fermions and bosons be treated
in an equivalent way as the ordinary space?

o Can we replace the group theories in the way so that we
do not need to invent groups for each observed properties of
fermions and bosons?: In the way as the ordinary space is
automatically enlarged with d,

o having in mind that the large enough orthogonal group
includes all the other groups?

Something like that string theories do.



o Why do we need to understand internal spaces of fermions
and bosons?

▶ o Do we understand internal spaces of fermions and
bosons in an unique way?

▶ o Do we understand why fermions appear in families
while bosons do not?

▶ o Do we understand the postulates of the second
quantized fields; why fermion fields anti-commute while
boson fields commute?

▶ Do we understand why fermions and bosons interact?

▶ Can we understand our cosmos if we do not understand
the appearance of fermions and bosons?

And many other questions



▶ o In a long series of works the author, together with
collaborators, has found the phenomenological success
with the model named the spin-charge-family theory with
the properties: The creation and annihilation operators
for fermions and bosons fields are described as tensor
products of the Clifford odd (for fermions) and the
Clifford even (for bosons) “basis vectors” and basis in
ordinary space, explaining the second quantization
postulates.

▶ o The theory offers the explanation for the observed
properties of fermion and bosons and for several
cosmological observations.

▶ o The number of creation and annihilation operators for
fermions and bosons is the same, manifesting
correspondingly a kind of supersymmetry.



▶ o This workshop should present the properties of the
creation and annihilation operators if extending the point
fermions and bosons into strings, expecting that this
theory offers the low energy limit for the string theory.

▶ o We are making the first steps in this study: We try to
reproduce the internal wave functions for the boson
fields, represented in the “string theories” with the
tensor products of the left and right movers, with the
algebraic products of the Clifford odd “basis vectors”
and their Hermitian conjugated partners.



▶ o Let us start with a brief introduction into the
description of the internal spaces of fermions and bosons
with the Clifford odd and even algebra, respectively,
starting with the Grassmann algebra.



o Let us notice properties of the Grassmann algebra first.

▶ In Grassmann d-dimensional space there are d
anti-commuting (operators) θa, and d anti-commuting
operators which are derivatives with respect to θa, ∂

∂θa
,

{θa, θb}+ = 0 , { ∂

∂θa
,
∂

∂θb
}+ = 0 ,

{θa,
∂

∂θb
}+ = δab , (a, b) = (0, 1, 2, 3, 5, · · · , d) .

θa’s and pθa ’s, p
θ
a = ∂

∂θa

have the property

(θa)† = ηaa ∂
∂θa

,

with ηab = diag{1,−1,−1, · · · ,−1}

Grassmann algebra is offering together 2 · 2d operators.

J. of Math. Phys. 34 (1993) 3731



▶ o There are two kinds of the Clifford algebra objects, γa

and γ̃a, in any d, expressible with θa and ∂
∂θb

.

γa = (θa +
∂

∂θa
) , γ̃a = i (θa − ∂

∂θa
) ,

θa =
1

2
(γa − i γ̃a) ,

∂

∂θa
=

1

2
(γa + i γ̃a) ,

offering together 2 · 2d operators: 2d are superposition of
products of γa and 2d of γ̃a.

▶ The two kinds of the Clifford algebra objects
anti-commute in the sense

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+,
{γa, γ̃b}+ = 0,

Progress in Particle and Nuclear Physics, http://doi.org/
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▶ o Grassmann algebra is describing the anti-commuting
fermion fields with integer spins and commuting boson
fields with integer spins.

▶ o There are no anti-commuting fermion fields with
integer spins observed so far.
And there are one kind of anti-commuting fermion fields
with half integer spins and commuting boson fields with
integer spins observed so far.

▶ o the postulate

(γ̃aB = i(−)nBBγa ) |ψ0 >,

(B = a0 + aaγ
a + aabγ

aγb + · · ·+ aa1···adγ
a1 . . . γad )|ψo >,

with (−)nB = +1,−1, if B has a Clifford even or odd
character, respectively, |ψo > is a vacuum state on which the
operators γa apply, reduces the Clifford space for fermions
and bosons for the factor of two, while the operators
γ̃aγ̃b = −2i S̃ab define the family quantum numbers.



o We have in each even-dimensional space

▶ 2
d
2
−1 members, m, in each of 2

d
2
−1 families, f , the

Clifford odd “basis vectors” b̂m†
f and the same number,

2
d
2
−1× 2

d
2
−1, of their Hermitian conjugated partners,

(b̂m†
f )†, offering description of internal space of fermions,.

▶ We have the same number, twice 2
d
2
−1 ×2

d
2
−1, of two

kinds of the Clifford even “basis vectors”, I Âm†
f and

II Âm†
f , having their Hermitian conjugated partners within

the same group, offering the description of the internal
space of bosons.

To show this let us first “build” the building blocks:
nilpotents and projectors, the eigenvectors of the Cartan
subalgebra of the Lorentz algebra , so that the internal
spaces of fermions and bosons will be algebraic products of
nilpotents and projectors.



▶ o It is convenient to write all the ”basis vectors” describing
the internal space of either fermion fields or boson fields
as products of nilpotents and projectors, which are
eigenvectors of the chosen Cartan subalgebra

S03,S12,S56, · · · ,Sd−1 d ,

S̃03, S̃12, S̃56, · · · , S̃d−1 d ,

Sab = Sab + S̃ab .

nilpotents

Sab 1

2
(γa +

ηaa

ik
γb) =

k

2

1

2
(γa +

ηaa

ik
γb) ,

ab

(k) :=
1

2
(γa +

ηaa

ik
γb) ,

projectors

Sab 1

2
(1 +

i

k
γaγb) =

k

2

1

2
(1 +

i

k
γaγb) ,

ab

[k] :=
1

2
(1+

i

k
γaγb) ,

(
ab

(k))2 = 0 , (
ab

[k])2 =
ab

[k] ,

ab

(k)

†

= ηaa
ab

(−k) ,
ab

[k]

†

=
ab

[k] .



It is easy to find the relations

Sab
ab

(k) =
k

2

ab

(k), Sab
ab

[k] =
k

2

ab

[k],

S̃ab
ab

(k) =
k

2

ab

(k), S̃ab
ab

[k] = −frack2
ab

[k] .

γa
ab

(k) = ηaa
ab

[−k] , γb
ab

(k) = −ik
ab

[−k] , γa
ab

[k] =
ab

(−k) , γb
ab

[k] = −ikηaa
ab

(−k) ,

γ̃a
ab

(k) = −iηaa
ab

[k] , γ̃b
ab

(k) = −k
ab

[k] , γ̃a
ab

[k] = i
ab

(k) , γ̃b
ab

[k] = −kηaa
ab

(k) ,
ab

(k)
ab

(−k) = ηaa
ab

[k] ,
ab

[k]
ab

(k) =
ab

(k) ,
ab

(k)
ab

[−k] =
ab

(k) ,
ab

(k)
ab

[k] = 0 ,
ab

[k]
ab

(−k) = 0 ,
ab

[k]
ab

[−k] = 0 ,
ab

(̃−k)
ab

(k) = −iηaa
ab

[k] ,
ab

[̃k]
ab

(k) =
ab

(k) ,
ab

(̃k)
ab

[k] = i
ab

(k) ,
ab

[̃−k]
ab

[k] =
ab

[k] ,
ab

(̃k)
ab

(k) = 0 ,
ab

[̃−k]
ab

(k) = 0 ,
ab

(̃k)
ab

[−k] = 0 ,
ab

[̃k]
ab

[k] = 0 .



o

▶ γa transforms
ab

(k) into
ab

[−k], never to
ab

[k].

▶ γ̃a transforms
ab

(k) into
ab

[k], never to
ab

[−k].

▶ There are the Clifford odd ”basis vectors”, that is the
”basis vectors” with an odd number of nilpotents, at
least one, the rest are projectors, such “basis vectors”
anti-commute among themselves.

▶ There are the Clifford even ”basis vectors”, that is the
”basis vectors” with an even number of nilpotents, the
rest are projectors, such ”basis vectors” commute
among themselves.



o A. Let us start with the Clifford odd “basis vectors”.

▶ Let us see how does one family of the Clifford odd “basis
vectors” in d = (13 + 1) look like, if spins in d = (13 + 1)
are analysed with respect to the standard model groups.

▶ One irreducible representation of one family contains

2
(13+1)

2
−1 = 64 members which include all the family

members, quarks and leptons with the right handed
neutrinos included, as well as all the anti-members,
antiquarks and antileptons, reachable by either Sab (or
by CN PN on a family member).

▶ Sab generate all the members of one family.
S̃ab generate all the families.

Jour. of High Energy Phys. 04 (2014) 165
J. of Math. Phys. 34, 3731 (1993),
Int. J. of Modern Phys. A 9, 1731 (1994),
J. of Math. Phys. 44 4817 (2003), hep-th/030322 .



o The eightplet (represent. of SO(7, 1)) of quarks of a
particular colour charge are presented. Theyare Clifford odd
”basis vectors” , the eigenvectors of all the Cartan
subalgebra members. (τ33 = 1/2, τ38 = 1/(2

√
3) and τ4 = 1/6)

i |aψi > Γ(3,1) S12 Γ(4) τ13 τ23 Y τ4

Octet, Γ(7,1) = 1, Γ(6) = −1,
of quarks
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γ0γ7 and γ0γ8 transform uR of the 1st row into uL of the 7th row, and dR of the 4rd row into dL of the 6th row,

doing what the Higgs scalars and γ0 do in the standard model.



o Sab generate all the members of one family with leptons
included. Here is The eightplet (represent. of SO(7, 1)) of
leptons colour chargeless. The SO(7, 1) part is identical with
the one of quarks.

i |aψi > Γ(3,1) S12 Γ(4) τ13 τ23 Y Q

Octet, Γ(7,1) = 1, Γ(6) = −1,
of leptons
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γ0γ7 and γ0γ8 transform νR of the 1st line into νL of the 7th line, and eR of the 4rd line into eL of the 6th line,

doing what the Higgs scalars and γ0 do in the standard model.



o Sab generate also all the anti-eightplet (repres. of SO(7, 1))
of anti-quarks of the anti-colour charge belonging to the
same family of the Clifford odd basis vectors. Also eightplet
of anti leptons.

i |aψi > Γ(3,1) S12 Γ(4) τ13 τ23 Y τ4

Antioctet, Γ(7,1) = −1, Γ(6) = 1,
of antiquarks
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γ0γ7 and γ0γ8 transform d̄L of the 1st row into d̄R of the 5th row, and ūL of the 4rd row into ūR of the 8th row.



o
▶ The Hermitian conjugated partners of the Clifford odd

“basis vectors” b̂m†
f , follow if all nilpotents

ab

(k) of b̂m†
f are

transformed into ηaa
ab

(−k). Projectors
ab

[k] are selfadjoint.
▶ All the “basis vectors” within any family, as well as the

“basis vectors” among families, are orthogonal; that is,
their algebraic product is zero. The same is true within
their Hermitian conjugated partners.

b̂m†
f ∗Ab̂m‘†

f‘ = 0 , b̂mf ∗Ab̂m‘
f‘ = 0 , ∀m,m′, f , f ‘ .

b̂mf ∗A
|ψoc > = 0. |ψoc > ,

b̂m†
f ∗A

|ψoc > = |ψm
f > ,

{b̂mf , b̂m
′

f ‘ }∗A+|ψoc > = 0. |ψoc > ,

{b̂m†
f , b̂m

′†
f ‘ }∗A+|ψoc > = 0. |ψoc > ,

{b̂mf , b̂
m′†
f ‘ }∗A+|ψoc > = δmm′

δff ‘|ψoc > ,

|ψoc > =
2
d
2
−1∑

f=1

b̂mf ∗A
b̂m†
f | 1 > ,



o B. Let us discuss the properties of the Clifford even ”basis
vector”.

▶ While the Clifford odd “basis vectors” must be products
of an odd number of nilpotents, at least one, the rest,
up to d

2 , of projectors, the Clifford even “basis vectors”
must be products of an even number of nilpotents and
the rest, up to d

2 , of projectors; Each nilpotent and each
projector is chosen to be the “eigenstate” of one of the
members of the Cartan subalgebra of the Lorentz
algebra,
Sab = Sab + S̃ab.
Correspondingly the “basis vectors” are the eigenstates
of all the members of the Cartan subalgebra of the
Lorentz algebra.



o Let us call the Clifford even “basis vectors” iÂm†
f , i = (I , II )

denotes two groups of Clifford even “basis vectors”, while m
and f determine membership of “basis vectors” in any of the
two groups, I or II .
▶

d = 2(2n + 1)

IÂ1†
1 =

03

(+i)
12

(+) · · ·
d−1 d

[+] IIÂ1†
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03

(−i)
12

(+) · · ·
d−1 d

[+] ,

IÂ2†
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03

[−i]
12

[−]
56

(+) · · ·
d−1 d

[+] IIÂ2†
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03
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12
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56

(+) · · ·
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[−]
d−1 d

(−) IIÂ3†
1 =

03

(−i)
12

(+)
56

(+) · · ·
d−3 d−2

[−]
d−1 d

(−) ,

. . . . . .

▶ Similarly for d = 4n
In both cases the Clifford even basis vectors can have
only even number of nilpotents: (0,2,...).



o There are 2
d
2
−1 × 2

d
2
−1 the Clifford even “basis vectors” of

the kind I Âm†
f and there are 2

d
2
−1 × 2

d
2
−1 Clifford even “basis

vectors” of the kind II Âm†
f .

▶

iÂm†
f ∗A iÂm′†

f‘ →
{

iÂm†
f‘ ,

or 0 , i = (I, II) .

▶

IÂm†
f ∗A IIÂm†

f = 0 = IIÂm†
f ∗A IÂm†

f .



o It remains to evaluate the algebraic application, ∗A, of the
Clifford even “basis vectors” I ,II Âm†

f on the Clifford odd

“basis vectors” b̂m
′†

f ‘ .

▶

IÂm†
f ∗A b̂m

′†
f‘ →

{
b̂m†
f‘ , ,

or zero ,

▶

b̂m†
f ∗A IÂm′†

f‘ = 0 , ∀(m,m‘, f , f ‘) .

▶

IIÂm†
f ∗A b̂m

′†
f‘ = 0 , ∀(m,m′, f , f ‘) ,

▶

b̂m†
f ∗A IIÂm′†

f‘ →
{

b̂m†
f“ ,

or zero ,



o Let be pointed out again that although there is the same
number of the Clifford odd and the Clifford even “basis
vectors” and their Hermitian conjugated partners, each have

2× 2
d
2
−1 × 2

d
2
−1 , yet they have completely different

properties:

▶ b̂m†
f appear in families and have their Hermitian

conjugated partners b̂mf in a separate group,
they anticommute, explaining the second quantization
postulates for fermions,

▶ iÂm†
f have no families, appear in two groups, have their

Hermitian conjugated partners within the same group,
they commute, explaining the second quantization
postulates for bosons.

Yet it is a small step from the Clifford even to the Clifford
odd objects: the algebraic multiplication of b̂m†

f by γa or γ̃a

transform b̂m†
f or b̂mf to iÂm′†

f ‘ and vice versa.



Let us see that γa, applying on the Clifford odd b̂m†
f ,

changes it to iÂm′†
f ‘ , and γa, applying on the Clifford even

iÂm′†
f ‘ changes it to b̂m†

f , changing the number of nilpotents
for one, and similarly for γ̃a:

▶ γa transforms
ab

(k) into
ab

[−k],

γa transforms
ab

[k] into
ab

(−k),

▶ γ̃a transforms
ab

(k) into
ab

[k],

γ̃a transforms
ab

[k] into
ab

(k) .



o Let us demonstrate the difference in the Clifford odd and
the Clifford even “basis vectors” in d = (5 + 1) case.

▶ In d = (5 + 1) there are 2
6
2
−1 members of Clifford odd

“basis vectors” appearing in 2
6
2
−1 Clifford odd families.

▶ Clifford odd ”basis vectors”, b̂m†
f , have their Hermitian

conjugated partners, b̂mf , in the separate group not
reachable either by Sab or by S̃ab . Due to

ab

(k)
†

= ηaa
ab

(−k) ,
ab

[k]
†

=
ab

[k] .

▶ Clifford even ”basis vectors”, I Âm†
f , have their Hermitian

conjugated partners, I Âm
f , within the same group

reachable by Sab or by S̃ab .



basis vect. m f = 1 f = 2 f = 3 f = 4

S̃03, S̃12, S̃56 → i
2
,− 1

2
,− 1

2
− i

2
,− 1

2
, 1
2

− i
2
, 1
2
,− 1

2
i
2
, 1
2
, 1
2

S03 S12 S56 Γ(5+1) Γ(3+1)

odd I b̂
m†
f

1
03

(+i)
12
[+]

56
[+]

03
[+i ]

12
[+]

56
(+)

03
[+i ]

12
(+)

56
[+]

03
(+i)

12
(+)

56
(+) i

2
1
2

1
2

1 1

2 [−i ](−)[+] (−i)(−)(+) (−i)[−][+] [−i ][−](+) − i
2

− 1
2

1
2

1 1

3 [−i ][+](−) (−i)[+][−] (−i)(+)(−) [−i ](+)[−] − i
2

1
2

− 1
2

1 −1

4 (+i)(−)(−) [+i ](−)[−] [+i ][−](−) (+i)[−][−] i
2

− 1
2

− 1
2

1 −1

S03, S12, S56 → − i
2
, 1
2
, 1
2

i
2
, 1
2
,− 1

2
i
2
,− 1

2
, 1
2

− i
2
,− 1

2
,− 1

2
S̃03 S̃12 S̃56 Γ(5+1) Γ̃(3+1)

03 12 56 03 12 56 03 12 56 03 12 56

odd II b̂mf 1 (−i)[+][+] [+i ][+](−) [+i ](−)[+] (−i)(−)(−) − i
2

− 1
2

− 1
2

−1 1

2 [−i ](+)[+] (+i)(+)(−) (+i)[−][+] [−i ][−](−) i
2

1
2

− 1
2

−1 1

3 [−i ][+](+) (+i)[+][−] (+i)(−)(+) [−i ](−)[−] i
2

− 1
2

1
2

−1 −1

4 (−i)(+)(+) [+i ](+)[−] [+i ][−](+) (−i)[−][−] − i
2

1
2

1
2

−1 −1

S̃03, S̃12, S̃56 → − i
2
, 1
2
, 1
2

i
2
,− 1

2
, 1
2

− i
2
,− 1

2
,− 1

2
i
2
, 1
2
,− 1

2
S03 S12 S56 Γ(5+1) Γ(3+1)

03 12 56 03 12 56 03 12 56 03 12 56

even I IAm
f 1 [+i ](+)(+) (+i)[+](+) [+i ][+][+] (+i)(+)[+] i

2
1
2

1
2

1 1

2 (−i)[−](+) [−i ](−)(+) (−i)(−)[+] [−i ][−][+] − i
2

− 1
2

1
2

1 1

3 (−i)(+)[−] [−i ][+][−] (−i)[+](−) [−i ](+)(−) − i
2

1
2

− 1
2

1 −1

4 [+i ][−][−] (+i)(−)[−] [+i ](−)(−) (+i)[−](−) i
2

− 1
2

− 1
2

1 −1

S̃03, S̃12, S̃56 → i
2
, 1
2
, 1
2

− i
2
,− 1

2
, 1
2

i
2
,− 1

2
,− 1

2
− i

2
, 1
2
,− 1

2
S03 S12 S56 Γ(5+1) Γ(3+1)

03 12 56 03 12 56 03 12 56 03 12 56

even II IIAm
f 1 [−i ](+)(+) (−i)[+](+) [−i ][+][+] (−i)(+)[+] − i

2
1
2

1
2

−1 −1

2 (+i)[−](+) [+i ](−)(+) (+i)(−)[+] [+i ][−][+] i
2

− 1
2

1
2

−1 −1

3 (+i)(+)[−] [+i ][+][−] (+i)[+](−) [+i ](+)(−) i
2

1
2

− 1
2

−1 1

4 [−i ][−][−] (−i)(−)[−] [−i ](−)(−) (−i)[−](−) − i
2

− 1
2

− 1
2

−1 1



▶ o Clifford odd ”basis vectors” describing the internal space
of fermions in the case of d = (5 + 1) are presented in the

table as odd I b̂m†
f , having odd numbers of nilpotents,

▶ their Hermitian conjugated partners b̂mf appear in a

separate group presented in the same table as odd II b̂mf .
The two groups are not reachable by either Sab or by S̃ab.

▶ Clifford even ”basis vectors” describing the internal space
of bosons in the case of d = (5 + 1) are presented in the

table as even I , II I ,II Âm†
f , having an even numbers of

nilpotents.

▶ Their Hermitian conjugated partner appear within the
same group of ”basis vectors”, either I or II,
demonstrating correspondingly the properties of the
internal space of the gauge fields with respect to the
fermion ”basis vectors”.



*

▶ Clifford odd ”basis vector” describing the internal space

of quark uc1†↑R , ⇔ b1†1 :=
03

(+i)
12

[+] |
56

[+]
78

(+) ||
9 10

(+)
11 12

[−]
13 14

[−] ,
has the Hermitian conjugated partner equal to

uc1↑R⇔ (b1†1 )† =
13 14

[−]
11 12

[−]
9 10

(−) ||
78

(−)
56

[+] |
12

[+]
03

(−i), both with
an odd number of nilpotents,
both are the Clifford odd objects, belonging to two
group.

▶ Quarks ”basis vectors” contain b1†1 =
03

(+i)
12

[+] |
56

[+] from
d=(5+1).

▶ Clifford even ”basis vectors”, having an even number of
nilpotents, describe the internal space of the
corresponding boson field

IAm
f =

03

(+i)
12

(+) |
56

[+]
78

(+) ||
9 10

(+)
11 12

[−]
13 14

[−] ,

▶ it contains IAm
f =

03

(+i)
12

(+) |
56

[+] from d=(5+1).



*

Repeating the anti-commutation relations for Clifford odd
”basis vectors”,

representing the internal space of fermion fields of
quarks and leptons (i = (uc,f ,↑,↓R,L , dc,f ,↑,↓

R,L , νf ,↑,↓R,L , ef ,↑,↓R,L )) ,
and anti-quarks and anti-leptons, with the family quantum

number f .

▶ {bmf ,b
k†
f‘ }∗A+|ψo > = δf f′ δ

mk |ψo > ,

▶ {bmf ,bkf‘}∗A+|ψo > = 0·|ψo > ,

▶ {bm†
f ,bk†f′ }∗A+|ψo > = 0·|ψo > ,

▶ bmf |ψo > = 0·|ψo > ,

▶ bm†
f |ψo > = |ψm

f > ,

|ψo > =
03

[−i]
12

[−]
56

[−] · · ·
13 14

[−] | 1 >
define the vacuum state for quarks and leptons and
antiquarks and antileptons of the family f .

[ arXiv:1802.05554v1], [arXiv:1802.05554v4], [arXiv:1902.10628]



* Let us come back to d=(5+1) case and to the properties
of the Clifford odd and the Clifford even ”basiss vectors”
Let us first treat the properties of the ”basis vectors” for
fermion fields in d = (5 + 1), then we shall treat properties of
the ”basis vectors” for boson fields in d = (5 + 1), as well as
their mutual interaction.

The ”basis vectors” for fermion fields in d = (5 + 1), appear
in four families, each family is identical with respect to
Sab = i

4(γ
aγb − γbγa), distinguishing only in

S̃ab = i
4(γ̃

aγ̃b − γ̃bγ̃a).
The nilpotents and projectors are chosen to be eigenstates of the
Cartan subalgebra of the Lorentz algebra

Sab
ab

(k) =
k

2

ab

(k), Sab
ab

[k] =
k

2

ab

[k],

S̃ab
ab

(k) =
k

2

ab

(k), S̃ab
ab

[k] = −k

2

ab

[k].

S̃01
03

(+i)
12

[+]
56

[+]= − i
2

03

[+i ]
12

(+)
56

[+] ,

and the b̂m†
f are eigenvectors of all the Cartan subalgebra members.



”Basis vectors” for fermions

f m b̂
m†
f

S03 S12 S56 Γ3+1 N3
L N3

R τ3 τ8 τ S̃03 S̃12 S̃56

I 1
03

(+i)
12
[+] |

56
[+] i

2
1
2

1
2

1 0 1
2

0 0 − 1
2

i
2

− 1
2

− 1
2

2
03

[−i ]
12
(−) |

56
[+] − i

2
− 1

2
1
2

1 0 − 1
2

0 − 1√
3

1
6

i
2

− 1
2

− 1
2

3
03

[−i ]
12
[+] |

56
(−) − i

2
1
2

− 1
2

−1 1
2

0 − 1
2

1
2
√

3
1
6

i
2

− 1
2

− 1
2

4
03

(+i)
12
(−) |

56
(−) i

2
− 1

2
− 1

2
−1 − 1

2
0 1

2
1

2
√

3
1
6

i
2

− 1
2

− 1
2

II 1
03
[+i ]

12
(+) |

56
[+] i

2
1
2

1
2

1 0 1
2

0 0 − 1
2

− i
2

1
2

− 1
2

2
03

(−i)
12
[−] |

56
[+] − i

2
− 1

2
1
2

1 0 − 1
2

0 − 1√
3

1
6

− i
2

1
2

− 1
2

3
03

(−i)
12
(+) |

56
(−) − i

2
1
2

− 1
2

−1 1
2

0 − 1
2

1
2
√

3
1
6

− i
2

1
2

− 1
2

4
03
[+i ]

12
[−] |

56
(−) i

2
− 1

2
− 1

2
−1 − 1

2
0 1

2
1

2
√

3
1
6

− i
2

1
2

− 1
2

III 1
03
[+i ]

12
[+] |

56
(+) i

2
1
2

1
2

1 0 1
2

0 0 − 1
2

− i
2

− 1
2

1
2

2
03

(−i)
12
(−) |

56
(+) − i

2
− 1

2
1
2

1 0 − 1
2

0 − 1√
3

1
6

− i
2

− 1
2

1
2

3
03

(−i)
12
[+] |

56
[−] − i

2
1
2

− 1
2

−1 1
2

0 − 1
2

1
2
√

3
1
6

− i
2

− 1
2

1
2

4
03
[+i ]

12
(−) |

56
[−] i

2
− 1

2
− 1

2
−1 − 1

2
0 1

2
1

2
√

3
1
6

− i
2

− 1
2

1
2

IV 1
03

(+i)
12
(+) |

56
(+) i

2
1
2

1
2

1 0 1
2

0 0 − 1
2

i
2

1
2

1
2

2
03

[−i ]
12
[−] |

56
(+) − i

2
− 1

2
1
2

1 0 − 1
2

0 − 1√
3

1
6

i
2

1
2

1
2

3
03

[−i ]
12
(+) |

56
[−] − i

2
1
2

− 1
2

−1 1
2

0 − 1
2

1
2
√

3
1
6

i
2

1
2

1
2

4
03

(+i)
12
[−] |

56
[−] i

2
− 1

2
− 1

2
−1 − 1

2
0 1

2
1

2
√

3
1
6

i
2

1
2

1
2



Let us demonstrate properties of the internal space of
fermions using the odd Clifford subalgebra in two ways:
a. Let us use the superposition of members of Cartan
subalgebra for the subgroup SO(3, 1)× U(1): (N3

± , τ)

N3
±(= N3

(L,R)) :=
1

2
(S12 ± iS03) , τ = S56 ,

what is meaningful if we understand S03 and S12 as spins of
fermions , S56 as their charge,

o b. for the subgroup SU(3) ×U(1): (τ ′, τ3, τ8)

τ3 :=
1

2
(−S1 2 − iS0 3) , τ8 =

1

2
√
3
(−iS0 3 + S1 2 − 2S5 6) ,

τ ′ = −1

3
(−iS0 3 + S1 2 + S5 6) ,

if we treat the colour properties for fermions to learn from
this toy model as much as we can. The number of
commuting operators is three in both cases.



* a. We recognize twice 2 ”basis vectors” with charge ± 1
2 , and

with spins up and down.

-iS03

56S

S12

(1/2,-1/2,-1/2)

(-1/2,-1/2,1/2)

(1/2,1/2,1/2)

(-1/2,1/2,-1/2)

o b. We recognize one colour triplet of ”basis vectors” with τ ′ = 1
6

and one colour singlet with τ ′ = − 1
2 .

τ3

τ8

τ'

(1/2,1/2√3,1/6)

(0,0,-1/2)

(-1/2,1/2√3,1/6)

(0,-1/√3,1/6)



▶ o To see that the Clifford even ”basis vectors” I Âm†
f are

“the gauge” fields of the Clifford odd ”basis vectors”,
let us algebraically, ∗A, apply the Clifford even ”basis
vectors” I Âm†

f=3,m = (1, 2, 3, 4) on the Clifford odd “basis
vectors” .
* Let the Clifford even ”basis vectors”
I Âm†

f=3,m = (1, 2, 3, 4) be taken from the third column of

even I , and b̂m=1†
f=1 , is present as the first Clifford odd I

”basis vector” on the first and the second table.

▶ The algebraic application, ∗A, can easily be evaluated by
taking into account

∗
ab

(k)
ab

(−k) = ηaa
ab

[k] ,
ab

[k]
ab

(k) =
ab

(k) ,
ab

(k)
ab

[−k] =
ab

(k) ,
ab

(k)
ab

[k] = 0 ,
ab

[k]
ab

(−k) = 0 ,
ab

[k]
ab

[−k] = 0 ,

for any m and f .



We obtain:
▶

IÂ1†
3 (≡

03

[+i ]
12

[+]
56

[+])∗Ab̂1†1 (≡
03

(+i)
12

[+]
56

[+]) → b̂1†1 , selfadjoint

IÂ2†
3 (≡

03

(−i)
12

(−)
56

[+])∗Ab̂1†1 → b̂2†1 (≡
03

[−i ]
12

(−)
56

[+]) ,

IÂ3†
3 (≡

03

(−i)
12

[+]
56

(−))∗Ab̂1†1 → b̂3†1 (≡
03

[−i ]
12

[+]
56

(−)) ,

IÂ4†
3 (≡

03

[+i ]
12

(−)
56

(−))∗Ab̂1†1 → b̂4†1 (≡
03

(+i)
12

(−)
56

(−)) .

Looking at the eigenvalues of the b̂m†
1 we see that I Âm†

3

obviously carry the integer eigenvalues of S03,S12,S56.



Let us look at the eigenvalues of (τ3, τ8, τ ′) of b̂m†
1 .

b̂1†1 has (τ3, τ8, τ ′) = (0, 0,−1
2),

b̂2†1 has (τ3, τ8, τ ′) = (0,− 1√
3
, 16),

b̂3†1 has (τ3, τ8, τ ′) = (−1
2 ,

1
2
√
3
, 16),

b̂4†1 has (τ3, τ8, τ ′) = (12 ,
1

2
√
3
, 16).

The eigenvalues of (τ3, τ8, τ ′) of I Â1†
3 are obviously

I Â1†
3 has (τ3, τ8, τ ′) = (0, 0, 0),

I Â2†
3 has (τ3, τ8, τ ′) = (0,− 1√

3
, 23),

I Â3†
3 has (τ3, τ8, τ ′) = (−1

2 ,
1

2
√
3
, 23),

I Â4†
3 has (τ3, τ8, τ ′) = (12 ,

1
2
√
3
, 23),

It can be concluded: Sab=Sab + S̃ab. Using this recognition
we find the properties of the Clifford even ”basis vectors”:



f m ∗ I Âm†
f

S03 S12 S56 N 3
L N 3

R τ3 τ8 τ ′

I 1 ⋆⋆
03
[+i]

12
(+)

56
(+) 0 1 1 1

2
1
2

− 1
2

− 1
2
√

3
− 2

3

2 △
03

(−i)
12
[−]

56
(+) −i 0 1 1

2
− 1

2
− 1

2
− 3

2
√

3
0

3 ‡
03

(−i)
12
(+)

56
[−] −i 1 0 1 0 −1 0 0

4 ⃝
03
[+i ]

12
[−]

56
[−] 0 0 0 0 0 0 0 0

II 1 •
03

(+i)
12
[+]

56
(+) i 0 1 − 1

2
1
2

1
2

− 1
2
√

3
− 2

3

2 ⊗
03

[−i ]
12
(−)

56
(+) 0 −1 1 − 1

2
− 1

2
1
2

− 3
2
√

3
0

3 ⃝
03

[−i ]
12
[+]

56
[−] 0 0 0 0 0 0 0 0

4 ‡
03

(+i)
12
(−)

56
[−] i −1 0 −1 0 1 0 0

III 1 ⃝
03
[+i ]

12
[+]

56
[+] 0 0 0 0 0 0 0 0

2 ⊙⊙
03

(−i)
12
(−)

56
[+] −i −1 0 0 −1 0 − 1√

3
2
3

3 •
03

(−i)
12
[+]

56
(−) −i 0 −1 1

2
− 1

2
− 1

2
1

2
√

3
2
3

4 ⋆⋆
03
[+i ]

12
(−)

56
(−) 0 −1 −1 − 1

2
− 1

2
1
2

1
2
√

3
2
3

IV 1 ⊙⊙
03

(+i)
12
(+)

56
[+] i 1 0 0 1 0 1√

3
− 2

3

2 ⃝
03

[−i ]
12
[−]

56
[+] 0 0 0 0 0 0 0 0

3 ⊗
03

[−i ]
12
(+)

56
(−) 0 1 −1 1

2
1
2

− 1
2

3
2
√

3
0

4 △
03

(+i)
12
[−]

56
(−) i 0 −1 − 1

2
1
2

1
2

3
2
√

3
0

Selfadjoint members are denoted by ⃝, Hermitian conjugated

partners are denoted by the same symbol.



o Fig. analyses I Âm†
f with respect to Cartan subalgebra members

(τ 3, τ 8, τ ′).There are
one sextet with τ ′ = 0,

four singlets with (τ 3 = 0, τ 8 = 0, τ ′ = 0),
one “anti-triplet” with τ ′ = 2

3 and one “triplet” with τ ′ = − 2
3 .

NO FAMILIES!

τ(1,0,0)(-1,0,0)

(1/2,√3/2,0)(-1/2,√3/2,0)

(-1/2,-√3/2,0)
(1/2,-√3/2,0)

(0,1/√3,-2/3)

(-1/2,-1/(2√3),-2/3)
(1/2,-1/(2√3),-2/3)

(1/2,1/(2√3),2/3)
(-1/2,1/(2√3),2/3)

(0,-1/√3,2/3)
τ

τ

3

8

'



* We learned that the description of the internal spaces of
fermions and bosons with the Clifford algebra odd, for

fermions, and even, for bosons behave so that they offer:
a. families and all the observed charges of quarks and

leptons and anti-quarks and anti-leptons,
b. two kinds of the boson fields, the gauge fields of the
corresponding fermion fields, what looks very promising.

Can the Clifford algebra and the spin-charge-family theory
offer more if we extend the point fields in the ordinary space

to strings?



▶ In odd dimensional spaces fermion fields and boson fields
have completely different properties.



**

▶ In In odd dimensional spaces, d = 2n + 1, only half of
“basis vectors” demonstrate properties which they
demonstrate in even dimensional spaces,

▶ the properties which empower the Clifford odd “basis
vectors” to describe the internal space of fermions and

▶ the Clifford even “basis vectors” to describe the internal
space of bosons:

▶ This half belongs to d ′ = 2n and does demonstrate these
properties.

▶ The other half, obtained from the first half by the
application of S0 2n+1

▶ This second half of the Clifford odd “basis vectors”,
although anticommuting, demonstrate properties of the
Clifford even “basis vectors”,
and the second half of the Clifford even “basis vectors”,
although commuting, demonstrate properties of the
Clifford odd “basis vectors” in even dimensional spaces.



* Still anticommuting Clifford odd “basis vectors” (the
Clifford even operators S0 2n+1 do not change either oddness or
evenness of the “basis vectors”)

appear in two separate groups with 2
2n
2
−1× 2

2n
2
−1 members,

each with their Hermitian conjugated partners within the
same group having no families;

Still commuting Clifford even “basis vectors” appear in 2
2n
2
−1

families, each with 2
2n
2
−1 members, having their Hermitian

conjugated partners 2
2n
2
−1 ×2

2n
2
−1 in a separate group.

For illustration let me treat the special case for d = (4 + 1).



**

d = 4 + 1

Clifford odd

b̂1†1 =
03
(+i)

12
[+] , b̂1†2 =

03
[+i]

12
(+) , b̂

1†
3 =

03
[−i]

12
[+]γ5 , b̂

1†
4 =

03
(−i)

12
(+)γ5 ,

b̂
2†
1 =

03
[−i ]

12
(−) , b̂

2†
2 =

03
(−i)

12
[−] , b̂

2†
3 =

03
(+i)

12
(−)γ5 , b̂

2†
4 =

03
[+i ]

12
[−] γ5 ,

b̂11 =
03

(−i)
12
[+] , b̂12 =

03
[+i ]

12
(−) , b̂13 =

03
[+i ]

12
[+] γ5 , b̂14 =

03
(−i)

12
(−) γ5 ,

b̂21 =
03

[−i ]
12
(+) , b̂22 =

03
(+i)

12
[−] , b̂23 =

03
(+i)

12
(+) γ5 , b̂24 =

03
[−i ]

12
[−] γ5 ,

Clifford even

IA1†
1 =

03
[+i ]

12
[+] , IA1†

2 =
03

(+i)
12
(+) , IA1

3 =
03

(−i)
12
[+] γ5 , IA1

4 =
03

[−i ]
12
(+) γ5 ,

IA2†
1 =

03
(−i)

12
(−i) , IA2†

2 =
03

[−i ]
12
[−] , IA2

3 =
03
[+i ]

12
(−) γ5 , IA2

4 =
03

(+i)
12
[−] γ5 ,

IIA1†
1 =

03
[−i]

12
[+] , IIA1†

2 =
03

(−i)
12
(+) , IIA1†

3 =
03
(+i)

12
[+]γ5 , IIA1†

4 =
03
[+i]

12
(+)γ5 ,

IIA2†
1 =

03
(+i)

12
(−) , IIA2†

2 =
03
[+i ]

12
[−] , IIA2†

3 =
03

[−i ]
12
(−) γ5 , IIA2†

4 =
03

(−i)
12
[−] γ5 . (1)

It can clearly be seen that the left-hand side of the Clifford odd

“basis vectors” and the right-hand side of the Clifford even “basis

vectors”, although the former are the Clifford odd objects and the latter

are Clifford even objects, have similar properties.



o This is the first step to compare the properties of the
Clifford odd and the Clifford even “basis vectors” with the
properties of the string theories in the case of d = (9 + 1), for
which strings theory experts declare that it is favourable.

o We shall demonstrate how do the Clifford odd and Clifford
even “basis vectors” reproduce left and right movers of the
string theory IIA and IIB. Let us repeat:

b̂m†
f ∗Ab̂m‘†

f‘ = 0 , b̂mf ∗Ab̂m‘
f‘ = 0 , ∀m,m′, f , f ‘ .

o One can obtain the Clifford even “basis vectors”, I Âm†
f and

II Âm†
f , as algebraic products of the Clifford odd “basis

vectors” and their Hermitian conjugated partners,

▶ I Âm†
f = b̂m

′†
f ‘ ∗A (b̂m

′′†
f ‘ )†,

▶ II Âm†
f = (b̂m

′†
f ‘ )† ∗A b̂m

′†
f “ .



▶ o One can check that all 2
d
2
−1 × 2

d
2
−1 of I Âm†

f are

generated by any of 2
d
2
−1 f ‘ by the relation

I Âm†
f = b̂m

′†
f ‘ ∗A (b̂m

′′†
f ′′=f ‘)

†,

when m′ and m′′ run (1, 2, ..., 2
d
2
−1).

▶ o One can check that all 2
d
2
−1 × 2

d
2
−1 of II Âm†

f are

generated by any of 2
d
2
−1 m‘ by the relation

II Âm†
f = (b̂m

′†
f ‘ )† ∗A b̂m

′†
f ′′ ,

when f ′ and f ′′ run (1, 2, ..., 2
d
2
−1).

▶ One finds thatb̂m
′†

f ‘ ∗A (b̂m
′′†

f ‘ )† applying on b̂m
′′′†

f ‘′′ obey

IÂm†
f ∗A b̂m

′†
f‘ →

{
b̂m†
f‘ , ,

or zero ,

and that b̂m
′′′†

f “′ applying on (b̂m
′†

f ‘ )† ∗A b̂m
′†

f “ obey

b̂m†
f ∗A IIÂm′†

f‘ →
{

b̂m†
f“ ,

or zero ,



o If the handedness of the Clifford odd “basis vectors” is
chosen to be the right handedness,

Γ(d) =
∏

a(
√
ηaaγa) ·

{
(i)

d
2 , for d even ,

(i)
d−1
2 , for d odd ,

then their Hermitian conjugated parters have left handedness
(for either S12 = +1 and S12 = −1), resembling left and right
movers contributing to boson strings in string theories AII and
BII.

o The Clifford even “basis vectors” I Âm†
f , with S12 = 1 and

−1, for d = (5 + 1) is presented below as, b̂m
′†

1 ∗A (b̂m
′′†

1 )†.

(There are equivalently the same number of Clifford even

“basis vectors” I Âm†
f , for S12 = 0.)



S12 symbol I Âm†
f

= b̂
m′†
f ‘

∗A (b̂
m′′†
f ‘

)†

1 ⋆⋆ I Â1†
1 = b̂

1†
1 ∗A (b̂

4†
1 )†

03
[+i ]

12
(+)

56
(+)

03
(+i)

12
[+]

56
[+] ∗A

03
(−i)

12
(+)

56
(+)

1 ‡ I Â3†
1 = b̂

3†
1 ∗A (b̂

4†
1 )†

03
(−i)

12
(+)

56
[−]

03
[−i ]

12
[+]

56
(−) ∗A

03
(−i)

12
(+)

56
(+)

1 ⊙⊙ I Â1†
4 = b̂

1†
1 ∗A (b̂

2†
1 )†

03
(+i)

12
(+)

56
[+]

03
(+i)

12
[+]

56
[+] ∗A

03
[−i ]

12
(+)

56
[+]

1 ⊗ I Â3†
4 = b̂

3†
1 ∗A (b̂

2†
1 )†

03
[−i ]

12
(+)

56
(−)

03
[−i ]

12
[+]

56
(−) ∗A

03
[−i ]

12
(+)

56
[+]

−1 ⊗ I Â2†
2 = b̂

2†
1 ∗A (b̂

3†
1 )†

03
[−i ]

12
(−)

56
(+)

03
[−i ]

12
(−)

56
[+] ∗A

03
[−i ]

12
[+]

56
(+)

−1 ‡ I Â4†
2 = b̂

4†
1 ∗A (b̂

3†
1 )†

03
(+i)

12
(−)

56
[−]

03
(+i)

12
(−)

56
(−) ∗A

03
[−i ]

12
[+]

56
(+)

−1 ⊙⊙ I Â2†
3 = b̂

2†
1 ∗A (b̂

1†
1 )†

03
(−i)

12
(−)

56
[+]

03
[−i ]

12
(−)

56
[+] ∗A

03
(−i)

12
[+]

56
[+]

−1 ⋆⋆ I Â4†
3 = b̂

4†
1 ∗A (b̂

1†
1 )†

03
[+i ]

12
(−)

56
(−)

03
(+i)

12
(−)

56
(−) ∗A

03
(−i)

12
[+]

56
[+]



o To keep in mind:
The Clifford even “basis vectors” I Âm†

f are products of one
projector and two nilpotents, the Clifford odd “basis vectors”
and their Hermitian conjugated partners are products of one
nilpotent and two projectors or of three nilpotents.

The Clifford even and Clifford odd objects are eigenvectors of
all the corresponding Cartan subalgebra members. There are

2
6
2
−1 × 2

6
2
−1 algebraic products of b̂m

′†
1 ∗A (b̂m

′′†
1 )†.

The rest 8 of 16 members present I Âm†
f with S12 = 0.

o The members b̂m
′†

f together with their Hermitian
conjugated partners of each of the four families,
f = (1, 2, 3, 4), offers the same I Âm†

f with S12 = ±1 as the
ones presented in this table.



o The Clifford even “basis vectors” II Âm†
f , belonging to transverse

momentum in internal space, S12 equal to 1, the first half II Âm†
f ,

and −1, the second half II Âm†
f , for d = (5 + 1), are presented as

algebraic products of the first, m′ = 1, member of the “basis

vectors” b̂m
′=1†

f ′ and the Hermitian conjugated partners (b̂m
′=1†

f ′′ )†.

The Hermitian conjugated partners of two II Âm†
f are marked with

the same symbol.

The Clifford even “basis vectors” II Âm†
f are products of one

projector and two nilpotents, the Clifford odd “basis vectors” and
the Hermitian conjugated partners are products of one nilpotent
and two projectors or of three nilpotents.

There are again 2
6
2−1 × 2

6
2−1 algebraic products of b̂m

′†
f ‘ ∗A (b̂m

′†
f “ )†,

f ‘ and f “ run over all four families. The rest 8 of 16 members
presents II Âm†

f with S12 = 0.

The members b̂m
′†

f ‘ together with (b̂m
′†

f ‘′ m′ = (1, 2, 3, 4), offers the

same II Âm†
f with S12 = ±1 as the ones presented in this table.

(And equivalently for S12 = 0.)



S12 symbol II Âm†
f

= (b̂
1†
f ‘

)† ∗A b̂
1†
f “

1 ⋆⋆ II Â1†
1 = (b̂

1†
1 )† ∗A b̂

1†
4

03
[−i ]

12
(+)

56
(+)

03
(−i)

12
[+]

56
[+] ∗A

03
(+i)

12
(+)

56
(+)

1 ⊙⊙ II Â3†
1 = (b̂

1†
2 )† ∗A b̂

1†
4

03
(+i)

12
(+)

56
[−]

03
[+i ]

12
[+]

56
(−) ∗A

03
(+i)

12
(+)

56
(+)

1 ‡ II Â1†
4 = (b̂

1†
1 )† ∗A b̂

1†
3

03
(−i)

12
(+)

56
[+]

03
(−i)

12
[+]

56
[+] ∗A

03
[+i ]

12
(+)

56
[+]

1 ⊗ II Â3†
4 = (b̂

1†
2 )† ∗A b̂

1†
3

03
[+i ]

12
(+)

56
(−)

03
[+i ]

12
[+]

56
(−) ∗A

03
[+i ]

12
(+)

56
[+]

−1 ⊗ II Â2†
2 = (b̂

1†
3 )† ∗A b̂

1†
2

03
[+i ]

12
(−)

56
(+)

03
[+i ]

12
(−)

56
[+] ∗A

03
[+i ]

12
[+]

56
(+)

−1 ⊗⊗ II Â4†
2 = (b̂

1†
4 )† ∗A b̂

1†
2

03
(−i)

12
(−)

56
[−]

03
(−i)

12
(−)

56
(−) ∗A

03
[+i ]

12
[+]

56
(+)

−1 ‡ II Â2†
3 = (b̂

1†
3 )† ∗A b̂

1†
1

03
(+i)

12
(−)

56
[+]

03
[+i ]

12
(−)

56
[+] ∗A

03
(+i)

12
[+]

56
[+]

−1 ⋆⋆ II Â4†
3 = (b̂

1†
4 )† ∗A b̂

1†
1

03
[−i ]

12
(−)

56
(−)

03
(−i)

12
(−)

56
(−) ∗A

03
(+i)

12
[+]

56
[+]



Let us repeat what we have learned about the Clifford even and the
Clifford odd “basis vectors” in even dimensional spaces.

There are in even dimensional spaces 2
d
2−1 Clifford odd families,

each family having 2
d
2−1 members. The Clifford odd “basis vectors”

have their Hermitian conjugated partners in a separate group of
2

d
2−1 families with 2

d
2−1 members.

There are in even dimensional spaces two times 2
d
2−1 × 2

d
2−1

Clifford even basis vectors, with their Hermitian conjugated
partners within the same group.

In a tensor product with the basis in ordinary space the Clifford odd
“basis vectors”, together with their Hermitian conjugated partners,
and the Clifford even “basis vectors”, form creations and
annihilation operators, which fulfil on the vacuum state the
postulates of the second quantized fermion and boson fields.

o Both are represented by the points in the ordinary space.



o Looking at the properties of both kinds of the Clifford even
“basis vectors”, I Âm†

f and II Âm†
f , manifesting momentum in only

transverse dimensions (with Sab not equal S03), we found in both
Tables, that to both groups of the Clifford even “basis vectors” all
the family members m and all the families f contribute:

o a. To I Âm†
f , all the family members m for a particular family f and

their Hermitian conjugated partners contribute in b̂m
′†

f ‘ ∗A (b̂m
′′†

f ‘ )†,

using only half of possibilities ( 12 × 2
d
2−1 × 2

d
2−1), the other half

possibilities contribute to S12 = 0. Each family f ′ of b̂m
′†

f ‘ ∗A (b̂m
′′†

f ‘ )†

generates the same eight Clifford even I Âm†
f as are the ones

presented in the first of the above Tables for f ‘ = 1.

o b. To II Âm†
f , all the families f ‘ of a particular member m′ and their

Hermitian conjugated partners contribute in (b̂m
′†

f ‘ )† ∗A b̂m
′†

f ‘′ , using
only half of possibilities, the other half contribute to S12 = 0.

Each family member m′ generates in (b̂m
′†

f ‘ )† ∗A b̂m
′†

f ‘′ the same eight

Clifford even II Âm†
f as are the ones presented in the second one of

above Tables above for m′ = 1.



o We find in d = (9 + 1) which is the boson string AII and BII
case, according to what it is discussed so far on the case of
d = (5 + 1), in the case that we are interested only on those
internal degrees of freedom of the Clifford even “basis vectors” of
each of the two kinds,
I Âm†

f and II Âm†
f , which manifest momentum in only transverse

dimensions (with Sab not equal S03),
1
2 × 2

d=10
2 −1 × 2

d=10
2 −1 = 8× 16 = 128 of I Âm†

f , and 128 of II Âm†
f ,

together 256 of both kinds of the Clifford even “basis vectors”,
representing the boson fields.

These are also possibilities suggested in reference of Kevin Wray
(“An Introduction to String Theory”, Preprint typeset in JHEP
style - paper version), for closed strings in d = (9 + 1); for the
left-right movers or right-left movers forming the closed boson
strings of AII and BII kinds, manifesting the momentum in only
transverse dimensions they found 256 possibilities.

Our way of presenting the Clifford even “basis vectors” of two
kinds I Âm†

f and II Âm†
f , which manifest momentum in only transverse

dimensions agrees with the properties of the closed strings in
d = (9 + 1).



o The strings theories seems to offer the way for explaining the
so far observed fermion and boson second quantized fields,
with gravity included, by offering the renormalizability of the
theory by extending the point fermions and bosons into
strings and by offering the supersymmetry among fermions
and bosons.

o We expect that in the low energy regime the string theories
coincide with our predictions presented in this workshop
provided that we extend points in the ordinary space to
strings, hoping that this would help to solve the problem of
renormalisability of the spin-charge-family theory.



o Still a hard work is needed to make the next step towards
relating the string theories and the spin-charge-family theory.

o However, the description of the internal spaces of fermion
and boson fields with the Clifford odd and Clifford even “basis
vectors”, respectively, is simple and well defined, it might
bring a new understanding of the theory of our world.

o The first to be discovered is why the string theories find as
the only acceptable dimensions d = (9 + 1) and d = (25 + 1).

o Our way of presenting internal spaces of fermions and
bosons seems to treat all d = 2(2n + 1) in an equivalent way.



o The spin-charge-family theory sees d = (13 + 1) as an elegant
possibility which allows the explanation of all the
assumptions of the standard model before the electroweak
break, with the higgs and Yukawa couplings included,

o offering the explanation of the second quantization of
fermion and boson fields, explaining also the appearance of
the dark matter, matter-antimetter asymmetry, and other
observations included, with the choice of the simple and
elegant action.

o The extension of the point fields in ordinary space to
strings brings the hope for assuring renormalizability of the
spin-charge-family theory.
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